Assessing Potential Biological Damage from Radiation

Radioactive nuclides are sources of high-energy particles and/or photons. This radiation can break chemical bonds and ionize molecules. In order to assess the potential for biological damage from a particular source of radiation, the following characteristics need to be considered.

1. Energy of radiation
 - results from kinetic energy of particles and dosage
 - measured in “rads” (“radiation absorbed dose”)
 - 1 rad = 1×10^{-2} J deposited per kg tissue

2. Penetrating ability
 - results from particle charge
 - uncharged particles (e.g., γ rays and neutrons) have greater penetrating ability than charged particles (e.g., α, β^- and β^+)
 - also affected by the kinetic energies of the particles
 - low energy α stopped by dead layer of skin (external exposure)
 - low energy β^- and β^+ penetrate about 1 cm (external exposure)
 - γ rays and neutrons extremely penetrating

3. Ionizing ability
 - results from particle mass
 - $\alpha >$ neutron $> \beta^- \approx \beta^+ > \gamma$

4. Chemical properties
 - results from periodic trends
 - damage from an ingested/inhaled radioactive nuclide depends on its residence time
 - e.g., strontium-90 versus krypton-85 (both β^- emitters); strontium-90 would be expected to have a much longer residence time in the body because it is chemically similar to calcium (krypton-85 is an inert gas)

5. External vs. internal exposure

Half-life, $t_{1/2}$

time required for half the sample to react

Recall: first-order half-life does not depend on the initial quantity.

Radioactive decay is a statistical process. It’s impossible to determine the half-life from a very small sample of radioactive atoms!!

The Dating Game

Carbon-14 has a half-life of 5730 years. How old is a sample of tree bark containing 67.9% of the 14C activity of living bark?

\[
\ln \frac{N}{N_0} = -kt
\]

\[
\ln \left(\frac{1}{2} \right) = -kt_{1/2}
\]

\[
-k t_{1/2} = \ln 2
\]

\[
t_{1/2} = \frac{\ln 2}{k}
\]

\[
\ln \left(\frac{N}{N_0} \right) = -kt
\]

\[
\ln \left(\frac{0.679}{N_0} \right) = \ln (0.679) = (-1.21 \times 10^{-4} \text{ yr}^{-1}) t
\]

\[
t = 3200 \text{ years}
\]

3H \hspace{1cm} t_{1/2} = 12.5 \text{ years}
Applications/Problems

Radon ^{222}Rn

- ^{222}Rn formed in a series of steps from ^{238}U.

$$^{238}\text{U} \rightarrow \frac{4}{92} \text{He} + \frac{2}{86} \text{Pb} + rac{2}{92} \text{Po}$$

- Radon is colorless, odorless, chemically inert BUT its radioactive decay products are solids (dust). Any radon that decays in your lungs doesn’t get exhaled.

Smoke Detectors ^{241}Am

- α particle ionizes air particles
- $+$ ions move toward $-$ electrode
- electrons move toward $+$ electrode
- smoke particles also ionized, but recombination of smoke$^+$ ions and e$^-$ more efficient. → current drops → signal to horn

Medical Applications (See Section 22.5)

Considerations for medical applications of radioactive nuclides:
- short half-life
- stable decay products
- small doses
- localization in body
- penetrating ability

^{131}I

- iodine concentrates in the thyroid gland.
- ^{131}I used in the treatment of hyperthyroidism; kills some of the thyroid cells.
- ^{131}I is one by-product of nuclear power plants.

After the 1986 Chernobyl meltdown, residents downwind of the meltdown were given KI pills containing non-radioactive iodine so as to saturate the body with iodine so ^{131}I would not concentrate in the thyroid gland.

^{201}Tl

- cardiac imaging
- Tl accumulates in healthy heart tissue

^{99m}Tc

- Elution of an ion-exchange column containing $^{99m}\text{MoO}_4^{2-}$ (CrO$_4^{2-}$ analog) yields $^{99m}\text{TcO}_4^{-}$ (MnO$_4^{-}$ analog). Difference in charge results in movement in column.
- Neuroreceptor targeting (Alzheimer’s, Parkinson’s, epilepsy, schizophrenia)
- Compound must be neutral to pass through blood-brain barrier
- Ceretec used in brain imaging
- TRODAT-1 (TROpane DopAmine Transporter): uses related to Parkinson’s
\(^{18}\text{F} \\)
\[t_{1/2} = 110 \text{ min} \]
\(^{18}\text{F} \rightarrow ^{0}\text{e} + ^{18}\text{O} \)

- used in **Positron Emission Tomography (PET scan)**
 - choose molecule with high concentration in part of body of interest
 - synthesize compound, attach \(^{18}\text{F} \)
 - administer to patient
 - detect reaction of positrons with electrons in surrounding matter
 \[+_{1}\beta + \gamma \rightarrow 2_{0}\gamma \]
 “annihilation”
 - images metabolic activity very clearly (e.g., Alzheimer’s, epilepsy, CP, stroke)
 - PET scans still relatively uncommon: \(^{18}\text{F} \) short half-life: need to make onsite.
 Need a particle accelerator. Cost > $10^6 (scanner not included).
 - \(^{62}\text{Cu} \) also used in PET scans (blood flow).

- Contrast to **Computerized Axial Tomography (CAT scan)**
 - X-rays passed through body in thin slices.
 - Based on different densities of matter/tissue
 - No radioactive nuclide involved
 - Nothing radioactive administered to patient

- Contrast to **Magnetic Resonance Imaging (MRI)**
 - Patient inserted into huge magnet
 - Based on relaxation of spinning of hydrogen nuclei when magnetic field turned off
 - Excellent for imaging soft tissues (e.g., plaque from MS)
 - No radioactive nuclide involved
 - Nothing radioactive administered to patient

Binding Energy

Mass of atom \(\leq \) Sum of masses of particles that make up atom

The “missing” mass (mass defect) was converted to energy, called binding energy

\[E = mc^2 \]

\[(1.0 \times 10^{-3} \text{ kg})(3.00 \times 10^8 \text{ m/s})^2 = 9.0 \times 10^{13} \text{ J} \]

1 gram of mass = \(9 \times 10^{10} \text{ kJ of energy}! \)

To allow for fair comparison, the mass defect and corresponding binding energy are recorded on a per nucleon basis.

largest binding energy: \(^{56}\text{Fe} \) per nucleon

Both fission and fusion have the goal of producing nuclides with higher binding energies per nucleon.
(more stable). Both fission and fusion therefore release energy.